222 research outputs found

    Breath-hold MR cholangiopancreatography with three-dimensional, segmented, echo-planar imaging and volume rendering

    Get PDF
    End-expiration, 21-second breath-hold, three-dimensional magnetic resonance (MR) cholangiopancreatography (MRCP) was developed with segmented echo-planar imaging. In 15 healthy subjects and 14 randomly selected patients undergoing liver studies, three-dimensional MRCP images were obtained and volume rendered. In 15 (100%) healthy subjects and 13 (93%) patients, clear depiction of biliary, hepatic, and pancreatic ducts (with lumen diameter of at least 2 mm) was possible with good signal-to-noise ratio

    Visualization of sliding and deformation of orbital fat during eye rotation

    Get PDF
    PURPOSE: Little is known about the way orbital fat slides and/or deforms during eye movements. We compared two deformation algorithms from a sequence of MRI volumes to visualize this complex behavior. METHODS: Time-dependent deformation data were derived from motion-MRI volumes using Lucas and Kanade Optical Flow (LK3D) and nonrigid registration (B-splines) deformation algorithms. We compared how these two algorithms performed regarding sliding and deformation in three critical areas: the sclera-fat interface, how the optic nerve moves through the fat, and how the fat is squeezed out under the tendon of a relaxing rectus muscle. The efficacy was validated using identified tissue markers such as the lens and blood vessels in the fat. RESULTS: Fat immediately behind the eye followed eye rotation by approximately one-half. This was best visualized using the B-splines technique as it showed less ripping of tissue and less distortion. Orbital fat flowed around the optic nerve during eye rotation. In this case, LK3D provided better visualization as it allowed orbital fat tissue to split. The resolution was insufficient to visualize fat being squeezed out between tendon and sclera. CONCLUSION: B-splines performs better in tracking structures such as the lens, while LK3D allows fat tissue to split as should happen as the optic nerve slides through the fat. Orbital fat follows eye rotation by one-half and flows around the optic nerve during eye rotation. TRANSLATIONAL RELEVANCE: Visualizing orbital fat deformation and sliding offers the opportunity to accurately locate a region of cicatrization and permit an individualized surgical plan

    Labelling of mammalian cells for visualisation by MRI

    Get PDF
    Through labelling of cells with magnetic contrast agents it is possible to follow the fate of transplanted cells in vivo with magnetic resonance imaging (MRI) as has been demonstrated in animal studies as well as in a clinical setting. A large variety of labelling strategies are available that allow for prolonged and sensitive detection of the labelled cells with MRI. The various protocols each harbour specific advantages and disadvantages. In choosing a particular labelling strategy it is also important to ascertain that the labelling procedure does not negatively influence cell functionality, for which a large variety of assays are available. In order to overcome the challenges still faced in fully exploiting the benefits of in vivo cell tracking by MRI a good understanding and standardisation of the procedures and assays used will be crucial

    Improved reliability of perfusion estimation in dynamic susceptibility contrast MRI by using the arterial input function from dynamic contrast enhanced MRI

    Get PDF
    The arterial input function (AIF) plays a crucial role in estimating quantitative perfusion properties from dynamic susceptibility contrast (DSC) MRI. An important issue, however, is that measuring the AIF in absolute contrast-agent concentrations is challenging, due to uncertainty in relation to the measured (Formula presented.) -weighted signal, signal depletion at high concentration, and partial-volume effects. A potential solution could be to derive the AIF from separately acquired dynamic contrast enhanced (DCE) MRI data. We aim to compare the AIF determined from DCE MRI with the AIF from DSC MRI, and estimated perfusion coefficients derived from DSC data using a DCE-driven AIF with perfusion coefficients determined using a DSC-based AIF. AIFs were manually selected in branches of the middle cerebral artery (MCA) in both DCE and DSC data in each patient. In addition, a semi-automatic AIF-selection algorithm was applied to the DSC data. The amplitude and full width at half-maximum of the AIFs were compared statistically using the Wilcoxon rank-sum test, applying a 0.05 significance level. Cerebral blood flow (CBF) was derived with different AIF approaches and compared further. The results showed that the AIFs extracted from DSC scans yielded highly variable peaks across arteries within the same patient. The semi-automatic DSC–AIF had significantly narrower width compared with the manual AIFs, and a significantly larger peak than the manual DSC–AIF. Additionally, the DCE-based AIF provided a more stable measurement of relative CBF and absolute CBF values estimated with DCE–AIFs that were compatible with previously reported values. In conclusion, DCE-based AIFs were reproduced significantly better across vessels, showed more realistic profiles, and delivered more stable and reasonable CBF measurements. The DCE–AIF can, therefore, be considered as an alternative AIF source for quantitative perfusion estimations in DSC MRI.</p

    Qualitative grading of aortic regurgitation: a pilot study comparing CMR 4D flow and echocardiography.

    Get PDF
    Over the past 10 years there has been intense research in the development of volumetric visualization of intracardiac flow by cardiac magnetic resonance (CMR).This volumetric time resolved technique called CMR 4D flow imaging has several advantages over standard CMR. It offers anatomical, functional and flow information in a single free-breathing, ten-minute acquisition. However, the data obtained is large and its processing requires dedicated software. We evaluated a cloud-based application package that combines volumetric data correction and visualization of CMR 4D flow data, and assessed its accuracy for the detection and grading of aortic valve regurgitation using transthoracic echocardiography as reference. Between June 2014 and January 2015, patients planned for clinical CMR were consecutively approached to undergo the supplementary CMR 4D flow acquisition. Fifty four patients(median age 39 years, 32 males) were included. Detection and grading of the aortic valve regurgitation using CMR4D flow imaging were evaluated against transthoracic echocardiography. The agreement between 4D flow CMR and transthoracic echocardiography for grading of aortic valve regurgitation was good (j = 0.73). To identify relevant,more than mild aortic valve regurgitation, CMR 4D flow imaging had a sensitivity of 100 % and specificity of 98 %. Aortic regurgitation can be well visualized, in a similar manner as transthoracic echocardiography, when using CMR 4D flow imaging

    Microstructural brain injury in post-concussion syndrome after minor head injury

    Get PDF
    Introduction: After minor head injury (MHI), post-concussive symptoms commonly occur. The purpose of this study was to correlate the severity of post-concussive symptoms in MHI patients with MRI measures of microstructural brain injury, namely mean diffusivity (MD) and fractional anisotropy (FA), as well as the presence of microhaemorrhages. Methods: Twenty MHI patients and 12 healthy controls were scanned at 3 T using diffusion tensor imaging (DTI) and high-resolution gradient recalled echo (HRGRE) T2*-weighted sequences. One patient was excluded from the analysis because of bilateral subdural haematomas. DTI data were preprocessed using Tract Based Spatial Statistics. The resulting MD and FA images were correlated with the severity of post-concussive symptoms evaluated with the Rivermead Postconcussion Symptoms Questionnaire. The number and location of microhaemorrhages were assessed on the HRGRE T2*-weighted images. Results: Comparing patients with controls, there were no differences in MD. FA was decreased in the right temporal subcortical white matter. MD was increased in association with the severity of post-concussive symptoms in the inferior fronto-occipital fasciculus (IFO), the inferior longitudinal fasciculus and the superior longitudinal fasciculus. FA was reduced in association with the severity of post-concussive symptoms in the uncinate fasciculus, the IFO, the internal capsule and the corpus callosum, as well as in the parietal and frontal subcortical white matter. Microhaemorrhages were observed in one patient only. Conclusions: The severity of post-concussive symptoms after MHI was significantly correlated with a reduction of white matter integrity, providing evidence of microstructural brain injury as a neuropathological substrate of the post-concussion syndrome

    Magnetic resonance imaging of the coronary arteries: clinical results from three dimensional evaluation of a respiratory gated technique

    Get PDF
    BACKGROUND: Magnetic resonance coronary angiography is challenging because of the motion of the vessels during cardiac contraction and respiration. Additional challenges are the small calibre of the arteries and their complex three dimensional course. Respiratory gating, turboflash acquisition, and volume rendering techniques may meet the necessary requirements for appropriate visualisation. OBJECTIVE: To determine the diagnostic accuracy of respiratory gated magnetic resonance imaging (MRI) for the detection of significant coronary artery stenoses evaluated with three dimensional postprocessing software. METHODS: 32 patients referred for elective coronary angiography were studied with a retrospective respiratory gated three dimensional gradient echo MRI technique. Resolution was 1.9 x 1.25 x 2 mm. After manual segmentation three dimensional evaluation was performed with a volume rendering technique. RESULTS: Overall 74% (range 50% to 90%) of the proximal and mid coronary artery segments were visualised with an image quality suitable for further analysis. Sensitivity and specificity for the detection of significant stenoses were 50% and 91%, respectively. CONCLUSIONS: Volume rendering of respiratory gated MRI techniques allows adequate visualisation of the coronary arteries in patients with a regular breathing pattern. Significant lesions in the major coronary artery branches can be identified with a moderate sensitivity and a high specificity
    • …
    corecore